Slow carboxylation of Rubisco constrains the rate of carbon fixation during Antarctic phytoplankton blooms.
نویسندگان
چکیده
High-latitude oceans are areas of high primary production despite temperatures that are often well below the thermal optima of enzymes, including the key Calvin Cycle enzyme, Ribulose 1,5 bisphosphate carboxylase oxygenase (Rubisco). We measured carbon fixation rates, protein content and Rubisco abundance and catalytic rates during an intense diatom bloom in the Western Antarctic Peninsula (WAP) and in laboratory cultures of a psychrophilic diatom (Fragilariopsis cylindrus). At -1°C, the Rubisco turnover rate, kcat (c) , was 0.4 C s(-1) per site and the half saturation constant for CO2 was 15 μM (vs c. 3 C s(-1) per site and 50 μM at 20°C). To achieve high carboxylation rates, psychrophilic diatoms increased Rubisco abundance to c. 8% of biomass (vs c. 0.6% at 20°C), along with their total protein content, resulting in a low carbon : nitrogen ratio of c. 5. In psychrophilic diatoms, Rubisco must be almost fully active and near CO2 saturation to achieve carbon fixation rates observed in the WAP. Correspondingly, total protein concentrations were close to the highest ever measured in phytoplankton and likely near the maximum possible. We hypothesize that this high protein concentration, like that of Rubisco, is necessitated by slow enzyme rates, and that carbon fixation rates in the WAP are near a theoretical maximum.
منابع مشابه
Diversity and expression of RubisCO genes in a perennially ice-covered Antarctic lake during the polar night transition.
The autotrophic communities in the lakes of the McMurdo Dry Valleys, Antarctica, have generated interest since the early 1960s owing to low light transmission through the permanent ice covers, a strongly bimodal seasonal light cycle, constant cold water temperatures, and geographical isolation. Previous work has shown that autotrophic carbon fixation in these lakes provides an important source ...
متن کاملTEACHING TOOLS IN PLANT BIOLOGYTM: LECTURE NOTES Carbon-Fixing Reactions of Photosynthesis
Photosynthesis in plants converts the energy of sunlight into chemical energy. Although photosynthesis involves many proteins and catalytic processes, it often is described as two sets of reactions: the light-dependent reactions and the carbonfixing reactions. Plants do not have a monopoly on photosynthesis, which also occurs in other photosynthetic eukaryotes and several species of bacteria. I...
متن کاملEvidence for a clade-specific temporal and spatial separation in ribulose bisphosphate carboxylase gene expression in phytoplankton populations off Cape Hatteras and Bermuda
The factors affecting the regulation of photosynthetic carbon fixation in diverse phytoplankton populations are not yet understood. To this end, we have measured the expression of the gene (rbcL) for the major carbon fixation enzyme, ribulose-1,5-bisphosphate carboxylase/oxygenase, in coastal phytoplankton populations off Cape Hatteras and in oligotrophic oceanic picoplankton near Bermuda. Usin...
متن کاملAntarctic sea ice losses drive gains in benthic carbon drawdown
Climate forcing of sea-ice losses from the Arctic and West Antarctic are blueing the poles. These losses are accelerating, reducing Earth's albedo and increasing heat absorption. Subarctic forest (area expansion and increased growth) and ice-shelf losses (resulting in new phytoplankton blooms which are eaten by benthos) are the only significant described negative feedbacks acting to counteract ...
متن کاملSynechocystis PCC 6803 overexpressing RuBisCO grow faster with increased photosynthesis
The ribulose-1,5-bisphosphate (RuBP) oxygenation reaction catalyzed by Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is competing with carboxylation, being negative for both energy and carbon balances in photoautotrophic organisms. This makes RuBisCO one of the bottlenecks for oxygenic photosynthesis and carbon fixation. In this study, RuBisCO was overexpressed in the unicellular cy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The New phytologist
دوره 205 1 شماره
صفحات -
تاریخ انتشار 2015